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Word Embeddings

1 Text processing with NNs require to encoding into vectors
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One-hot encoding
1 One-hot encoding: N words encoded as binary vectors of length N
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Bag of Words (BoW)
1 Bag of Words: Collection and frequency of words

Dr. Konda Reddy Mopuri dl4cv-12/Word Embeddings 4



Drawbacks

1 Space inefficient

2 Word order is lost
3 Doesn’t capture language structure
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Word Embeddings: idea

1 Learn embeddings from the words into vectors: W (word)

2 Expecting that similar words fall nearby in the space
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Word Embeddings

1 What is the dimension of the embedding?

2 Trade-off: greater capacity vs. efficiency
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Word Embeddings

1 Finding W : as a part of a prediction task that involves neighboring
words
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Word Embeddings: word2vec

1 T Mikolov et al. (2013)

2 Predict words from the context
3 Two versions: Continuous Bag of Words (CBoW) and Skip-gram
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Word Embeddings: CBoW
1 Considers the embeddings of ‘n’ words before and ‘n’ words after the

target word

2 Adds them (order is lost) for predicting the target word
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Word Embeddings: CBoW
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Word Embeddings: CBoW

1 Size of the vocabulary = V

2 Dimension of the embeddings = N
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Word Embeddings: CBoW

1 Input layer WN×V projects the context in to N -d space

2 Representations of all the (2n) words in the context are summed
(result is an V -d context vector)
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Word Embeddings: CBoW

1 Next layer has a weight matrix W ′
V ×N

2 Projects the accumulated embeddings onto the vocabulary
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Word Embeddings: CBoW

1 V - way classification → (after a softmax) maximizes the probability
for the target word
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Word Embeddings: CBoW

1 WN×V or W ′
V ×N can be considered as the word embeddings

2 Or, take the average of both the representations
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Word Embeddings: Skipgram
1 Predicts surrounding words given current word

2 Pick a word in the context randomly, and predict that the words that
form the context
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Word Embeddings: Skipgram
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Word Embeddings: Skipgram
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Word Embeddings: Skipgram
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Word Embeddings: Skipgram
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Word Embeddings: interesting results

1 W(Paris) - W(France) + W(Italy) = W(Rome)

2 W(Man) - W(Woman) + W(King) = W(Queen)
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Word Embeddings: Applications

1 Key for the success of many NLP tasks such as PoS tagging, parsing,
semantic role labeling, etc.

2 Can serve projecting multi-modal data (e.g. multiple languages,
images and text, etc.)
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